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Abstract-An asymptotic model of work roll heat transfer is developed using a multiple time scale approach. 
The model is appropriate under typical high Peclet number rolling conditions and provides a unified 
framework for relating previous roll heat transfer models. The solution consists of a fast time scale thermal 
boundary layer near the roll surface, along with a slow time scale core heat transfer problem. Several 
features of the model are illustrated. First, boundary layer behavior is examined under steady and dynamic 
conditions. Here, the decay rate for boundary layer transients is determined and theoretical steady-state 
temperature distributions are compared against previously reported experimental data. Heat transfer within 
the core is then considered under relatively general surface heating conditions. In the special case where 
the surface heat flux is constant, core temperatures are shown to increase linearly with time. In the last 
illustration, the model is used to obtain inverse estimates of circumferentially varying roll surface heat flux 
and temperature distributions. In this case, comparisons are made with the finite difference-based inverse 
estimates recently reported by Huang et al., International Journal of’ Heat and Mass Trans,fhr, 1995, 38, 

1019-1031. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

A number of models describing work roll heat transfer 
have appeared in the last 30 years [l-9], beginning 
with Peck’s work in 1954 [l]. Most models assume a 
cyclic steady-state [2X3], and under typical high Peclet 
number conditions, indicate the presence of a near 
surface thermal boundary layer. Although true steady- 
state conditions can only appear following long 
rolling periods, i.e. time periods on the order of l?‘/~ 
(where & is the roll radius and x0 the roll thermal 
diffusivity), or in rare cases where roll cooling exactly 
matches roll heating, recent experimental measure- 
ments [lo, 1 l] show that nominally steady conditions 
exist within the near surface region, at least over time 
spans on the order of several (N 10) roll periods. 

Upsets in the steady-state thermal boundary layer 
accompany changes in roll heating conditions, e.g. 
when a new coil contacts the roll. An important ques- 
tion which bears, for example, on process control or 
inverse estimation, concerns the amount of time 
required for a new steady state to set in. Guo’s [9] 
work peripherally addresses this question by cir- 
cumferentially averaging the surface flux distribution. 
While this approach allows examination of unsteady 
effects, it cannot provide detailed information on the 
boundary layer adjustment time. Indeed, it appears 
that this question has not been rigorously addressed. 

Due to the typical mismatch between roll heating 
and cooling, the roll core can heat up and cool down 

t Author to whom correspondence should be addressed. 

in time. While boundary layer heat transfer occurs 
over time scales on the order of &’ (where fi is the 
roll rotation rate), core heat transfer occurs over much 
slower time scales determined by process heating and 
cooling variations. Due to the disparate difference 
between these time scales, it is extremely difficult to 
develop models which allow efficient calculation of 
heat transfer within both the boundary layer and 
within the core. This difficulty is reflected in the fact 
that present models either assume cyclically steady 
conditions [228] or incorporate circumferential aver- 
aging [9]. 

This article develops a multiple-time scale asymp- 
totic model of work roll heat transfer. The for- 
mulation provides a unified framework for relating 
previous boundary layer and core heat transfer models 
and provides a general basis for developing future 
models. We illustrate the model by: (i) examining 
transient and steady heat transfer within the near- 
surface thermal boundary layer ; (ii) determining core 
heat transfer under general surface heating con- 
ditions ; and (iii) applying the model to estimate cir- 
cumferential surface heat flux and temperature dis- 
tributions on a work roll. The first and last 
illustrations allow comparisons with recently reported 
experimental measurements. 

ASYMPTOTIC MODEL OF WORK ROLL HEAT 

TRANSFER 

A simple schematic of the rolling process is shown 
in Fig. 1. A work roll of radius I? rotates with angular 
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NOMENCLATURE 

A roll aspect ratio Greek symbols 
c pi Cplr cp2 specific heat ; dimensionless (10 reference thermal diffusivity 

coefficients in definition of cp y(T) dimensionless function in eqn (l), 
k ; k,, k, thermal conductivity ; (~,,fCJ’ 

dimensionless coefficients in 6 characteristic distance 
definition of k E inverse Peclet number 

N number of temperature measurements ? stretched radial distance in boundary 
used in inverse procedure layer 

4 heat flux 0 angular coordinate 

ik 
radial coordinate Ic uniform random deviate 
roll radius time scale 

s augmented least square function given ; roll rotation rate. 
in eqn (10) 

t time Subscript 
T temperature. 0 reference value ; leading order. 

F----T Ro” a 
Strip 

Fig. 1. Schematic of the rolling process and the coordinate 
system (adapted from [lo]). 

velocity fi and has a constant initial temperature F1. 
The roll width (not shown) is i while the workpiece 
width, i,, can, in general, vary from coil to coil. 
Within the work roll, the dimensionless conduction 
equation assumes the form 

~+;=~g(T)V,*[k(T)V,Tl (1) 

where Pe = fiod,fi2ff2/k, is the Peclet number, 
T = (‘T- $)jATs is the dimensionless temperature, 
Ai=% = &R/k0 is the characteristic temperature scale, 
A the characteristic applied heat flux, 
;, =‘i, a,ar + es l/r ajae + C&t a/az, is the dimen- 
sionless divergence operator, A = @L^, is the roll 
aspect ratio, r = iI@, z = f/i, and t = !%. The func- 
tions y(T) = (cp, +cp2T)-’ and k(T) = k, + k2T arise 
from our definitions of density, specific heat and ther- 
mal conductivity : fi = Jo, E,(T) = E&c,, + cplT), and 
L(T) = k,(k, + k,T). Here, jO, tpo and Lo are reference 
magnitudes and the dimensionless constants k,, k,, cp, 
and cp2 are determined from two-term expressions for 
c^,(n and k(f) [12]. Throughout, dimensional quan- 
tities are denoted with a caret. 

In the present study, the aspect ratio A is small, i.e. 
the roll is long compared to its radius. Thus, axial 
temperature variations are small relative to those in 

the radial and azimuthal directions. This is apparent 
in eqn (1) where A multiplies a/az in the operator V,. 
Consequently, the solutions obtained will apply over 
most of the roll’s length, where axial conduction is 
weak, but will not hold near the roll’s end, z = 1, 
where a boundary layer must exist in order to accom- 
modate prescribed heat flux boundary conditions. 
Similarly, solutions may break down near workpiece 
edges due to locally large axial temperature gradients. 
Neither of these regions are considered in this paper. 

Under typical high speed rolling conditions with 
steel work rolls, R-’ - 0.05 s, I? - 0.3 m, and 
&,/joc,, = lo-’ m2 s-‘. Consequently, the Peclet num- 
ber is large, i.e. the rotation rate is fast compared to 
the diffusion time scale within the roll. Thus, under 
typical conditions where heat is added and removed 
over various portions of the roll circumference, a thin 
thermal boundary layer is present at the roll surface, 
r = I. As mentioned, Huang et al. [lo] provide exper- 
imental evidence showing that the azimuthally varying 
surface flux distribution remains nominally time- 
invariant, at least over time spans on the order of 
several roll rotation periods. In contrast, experimental 
evidence [ 131 indicates that circumferentially averaged 
flux distributions vary on a slow time scale determined 
by changing operating conditions. Consequently, the 
problem is one of multiple time scales: a fast time 
t = & determined by the roll rotation rate, and a 
slow, process-related time scale. 

To tackle this problem, the heat flux at the roll 
surface is modeled by a prescribed function that varies 
over a slow time scale. This leads to a dimensionless 
boundary condition on the roll surface r = 1 given by 

k(T);= q(z,i)+q’(z,O,2) (2) 

where i is the slow time scale defined by i = Pe- 't, 
and where q’ has zero circumferential mean 
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(3) k(T)g = - 1 
Jpe 

q’(k z, 0 

with matching condition Typically, at the end of the roll, z = 1, there is 
negligible heat flux and an appropriate boundary con- 
dition is 
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(12) 

This condition appears to hold during hot soaking 
(when the roll is preheated prior to rolling) and when 
strip widths are somewhat less than the roll width [ 131. 
Conditions at r = 0 and z = 0 are given below. Note, 
if a significant heat flux exists at the roll ends, eqn (4) 
can be modified. 

k(T);= 0. 

T+O asq+co. (13) 

Since A/Pe -K 1 in most practical problems, the axial 
conduction term has been neglected in obtaining (10). 
Thus, z functions only as a parameter in (9) and (12), 
i.e. the solution to T’ only depends on the local 
(though typically axially-varying) flux distribution. 
As such (and as mentioned), the solution is valid over 
most of the roll’s length, but fails in a small neigh- 
borhood of the roll’s end, z = 1. An additional bound- 
ary layer would be required in order to complete the 
solution in this region. Note that the axial flux vari- 
ation imposed in (12) is compatible with neglect of 
axial conduction, provided that this variation is not 
severe. 

To accommodate the boundary condition (2), the 
solution to (1) is divided into two terms, 

T= T(r,z,i)+T(r,Q,z,t,i). (5) 

The first term evolves on the slow time scale, t, and 
accounts for roll heating by the circumferentially aver- 
aged surface heat flux 4. The second term T’ is intro- 
duced in order to accommodate the azimuthal heat 
flux variation. This term must : (i) allow for transient 
responses that occur on the fast time scale ; (ii) accom- 
modate possible slow time scale evolution; and (iii) 
provide the steady boundary layer temperature dis- 
tribution under steady-state conditions. Substituting 
(5) into (1) we obtain 

Due to the large Peclet number, we have a hierarchy 
of problems to consider. At O(l), 

ar aT x+7$=0. (7) 

Using the initial condition T’ = 0, and writing (7) in 
characteristic form shows that the solution is 

T E 0. (8) 

However, since this does not satisfy the surface bound- 
ary condition on r = 1 

k(T) g = q’(0, z, f) (9) 

a thermal boundary layer solution is required near 
r = 1. Introducing the boundary layer coordinate q = 
fi( 1 - r) and considering a solution to eqn (6) hav- 
ing the form T’ = 7’“[~, 0, z,t, 2]. we obtain the thermal 
boundary layer problem 

a k(T)aT g+g=y(T)T& ~ 
( > aq (10) COMPARISON WITH PREVIOUS MODELS 

r=O att=O 
A representative summary of recent work roll heat 

(11) transfer models is given in Table 1. The table indicates 

We note that under steady-state conditions and for 
constant thermophysical properties, the boundary 
layer problem in (lo)-(13) simplifies to the problem 
considered by Yuen [8] and Tseng [6, lo]. Although 
Patula [2] and Yuen [3] did not formulate their models 
in terms of the thermal boundary layer, their solutions 
nevertheless approach the boundary layer solution as 
Pe becomes large [2, 31. (Refer to Table 1,) 

At the next order, O(Pe-‘), we have 

aii ar 
,-+~=mV'w~)~li?+V, WT)V, T)l 

(14) 

which simplifies to 

(15) 

throughout the roll. Associated boundary and initial 
conditions are 

2==0 ?=O (16a) 

k(T) g = 4(z, i) r= 1 (16a) 

aii' -_=O r=O ar (16b) 

aT mg=o z=l (16~) 

ai; 
a;=0 z=o. (164 

[Refer to eqn (8) and note that (16b) and (16d) are 
assumed symmetry conditions.] 



874 R. E. JOHNSON and R. G. KEANlNl 

Table I Representative roll heat transfer models 

Ref. 

PI 
[31 
[41 
[51 
[61 
[71 
[81 
[91 

[lOI 
[I 11 
[I31 

Equivalent 
governing 
equation 

(10) 
(10) 
(10) 
(10) 
(10) 
(10) 
(10) 
(15) 

(10) 
(10) 
(15) 

Assumptionss 
simplifications 

steady 
steady 
steady 
steady 
steady 
steady 
steady 

circumferentially avg’d. 
gov. eqn. 

circumferentially avg’d 
gov. eqn. 

Thermo- 
physical 

properties 

constant 
constant 
constant 
constant 
constant 
constant 
constant 
constant 

constant 
constant 
constant 

Solution 
method Comments 

analytical 1,x 6 
analytical 1. 2, 3, 6 
numerical 1, 2, 6 

analytical and numerical 2, 3, 4, 6 
analytical 6 
analytical 4, 5, 6, 7 
analytical 2, 4, 671 
analytical 2, 6, 8 

inverse-numerical 1, 9 
inverse-numerical 1,9, 10 
inverse-numerical 8, 11 

1. Although the second derivative in the azimuthal direction is included, this term becomes negligible at high Pe. Axial 
temperature variations neglected. 

2. Solutions based on specified flux distributions. 
3. Effects of strip scale layer incorporated. 
4. Treated boundary layer problem similar to (10). 
5. Focused on heat transfer in the roll bite. 
6. Experimental validation not performed due to lack of data. 
7. Based on two-dimensional semi-infinite domain approximation. 
8. Models core heat transfer over long time periods. 
9. Used to obtain inverse-based estimate of azimuthal flux distribution. 

10. Employed Lagrangian approach. 
11. Used to obtain inverse-based estimate of time- and axially-dependent flux distributions over a period of approximately 
3 h. 

the relationship between previous models and the 
present model and includes direct models used in 
recent inverse calculations. While all listed models 
neglect thermophysical property variations, recent 
surface temperature measurements reported by Tseng 
et al. [l I] and Huang et al. [IO] show that roll surface 
temperatures can vary by approximately 400°C during 
each rotation. Thus, applications demanding high 
accuracy should incorporate temperature dependent 
thermophysical properties. Suitable solution methods 
can be adapted from those given in Refs [ 141 and [ 151. 

As is also shown in Table 1, the problem in (15)- 
(16d) is equivalent to the problem recently solved by 
Guo [9]. As mentioned, this solution, obtained using 
Laplace transforms and spatial and temporal super- 
position, removes the azimuthal dependence by cir- 
cumferentially averaging the flux distribution at Y = 1. 
The model accommodates time-dependent (cir- 
cumferentially-averaged), axially-varying roll surface 
flux distributions and can be used to simulate, e.g. 
multi-coil rolling and rolling of variable width strip 
[9]. Due to the length of his solution, the interested 
reader is referred to Ref. [9]. We also note that the 
problem defined in (15))( 16d) was recently used to 
obtain an inverse-based estimate of axially and tem- 
porally-varying work roll flux distributions [ 131. The 
estimate was based on spatially discrete, embedded 
temperature measurements and was obtained using a 
finite difference-conjugate gradient approach. 

MODEL ILLUSTRATION I: BOUNDARY LAYER 
HEAT TRANSFER 

Dynamic boundary layer 
In all illustrative examples, we neglect ther- 

mophysical property variations and obtain closed 
form solutions. The solutions are thus appropriate in 
cases where property variations are negligible or when 
high accuracy is not needed. Under these circum- 
stances, y(T) = k(T) = 1. In addition, we make the 
realistic assumption that the heat flux distribution q’ 
does not vary on the slow time scale [lo]. Based on 
these simplifications, we write eqn (10) in charac- 
teristic form 

d7” a2T -=~ 
dt aq2 

dH 
PZZ 
dt 

l-+0-e,=t 

(17) 

where B0 is the initial position of a point in the roll. 
A series solution useful for studying the dynamic 

behavior of T’ can be determined by expanding q’ in 
a Fourier series 
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where the axial variation outside the end-roll region 
(near z = 1) is captured in a,(z) and where 0 has been 
replaced by t + 8, (note, a,(z) is determined using the 
imposed flux distribution q’(8, z)). Based on this form 
of the flux boundary condition, the solution is given 

by 

i JG -,jzq sin 
[ 

n 
x -e n(t+&)+ : -_? 2 

J1 

2 m 

C( 

u2 cos n& + n sin n0, _~ 
n 0 n*+U4 

where the first term on the right is the steady-state 
solution obtained by setting T’, = 0 in (IO). 

The behavior of this solution over long time periods 
can be determined using Laplace’s method. Sub- 
stituting B-B,, = t, we find that as the steady-state is 
approached, the transient part of the solution decays 

-Ir2. ast 

----sin[n(B-t)]+;.., 
r&G I 

(22) 

Thus, boundary layer transients die out somewhat 
slowly. For example, at a typical rotation rate of _ 20 
rad s-‘, 5 s (12 revolutions) must elapse for every 
order of magnitude reduction in the time-dependent 
term. We note that the experimental transients 
reported in [l l] appear to decay like t-‘I*. However, 
the reported data is insufficient to allow a rigorous 
test. 

In closing this section, we mention Yuen’s work [2] 
which showed that accurate temperature calculations 
based on Fourier expansions require inclusion of a 
large number of modes. This feature arises due to 
typically large circumferential heat flux variations. 
Although Fourier solutions like that in (21) prove 
numerically inefficient, they are convenient for exam- 
ining qualitative boundary layer behavior. 

Steady-state boundary Iayer 
Considering steady boundary layer behavior, we 

avoid the computational difficulties associated with 
Fourier solutions by expressing the solution to (17) as 
a Duhamel integral [ 161: 

T = --I s O-0, 

7-1~*q’(e-eo-7,a) 
JPen 0 

x exp ( -q2/47) dr. (23) 

In order to test this solution, we impose a surface heat 
flux distribution which was recently reconstructed by 
Huang et al. via an inverse approach [lo] (see Model 
Illustration III). The flux distribution is shown in Fig. 
2(a) and was estimated at 10” increments, based on 
the experimental temperature measurements repro- 
duced in Fig. 2(c). The integral in (23) is evaluated 
using Gaussian quadrature and assumes linear vari- 
ations between each of the 36 estimated fluxes. 

Figure 2(b) compares calculated and experimental 
temperature measurements on the roll surface, while 
Fig. 2(c) compares calculated and measured tem- 
peratures at a depth 0.2 mm below the surface. As 
shown, calculated temperature distributions are in 
reasonable agreement with experimental measure- 
ments at both locations. The level of agreement sug- 
gests the validity of the asymptotic model and the 
relative accuracy of estimated flux distribution in Ref. 

DOI. 

MODEL ILLUSTRATION II: CORE HEAT 

TRANSFER DUE TO TIME- AND SPACE- 
DEPENDENT SURFACE HEAT FLUX 

DISTRIBUTIONS 

Core heat transfer is described by eqns ( 15))( 16d). 
Although a number of particular problems can be 
considered [9, 191, we will assume that the strip width 
is fixed and is less than the roll width. Under arbitrary 
surface heating (and/or cooling) conditions, where 
9 = (f(z, i), an integral solution can be obtained using 
a Green’s function : 

T(r,z, t) = 
s’ Ls”’ 

q(F’, z)G(r, 2, t(r’ 
0 0 

= l,I,r)2xdT 
1 

dr. (24) 

Here, the two-dimensional Green’s function, G, is the 
product of two one-dimensional Green’s functions, 
GR,,* and Gz12, where [20] : 

1 
GRo2(r, tlr’, 7) = - 

77 

+ i,.f, ev W,Z(t-91 J0 (BdJ0 (P.r’) 
Ji (Bn) 

(24a) 

and 

G,,,(z, t]z’,t) = 1 f2 f 
11=1 

x exp [m(t -7)] cos(y,z) cos(y,z’) (24b) 
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n 
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o Asymptotic model 
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o Asymptotic model 

200 250 300 350 400 
Angular position 

Fig. 2. Comparison between calculated temperatures and experimental temperatures reported in Ref. [lo] : 
(a) the reconstructed surface heat flux distribution [lo] used in eqn (23). The heat flux is plotted in units 
of 10’ W mm2 ; (b) measured and calculated roll surface temperatures; (c) measured and calculated 

temperatures at a depth 0.2 mm below the roll surface. 

and where the eigenvalues /3n in (24a) are the roots of 
J,(p) = 0 and Y,, = nrr in (24b). 

To gain insight into this solution, let 4 = q,, = con- 
stant, a condition that is nominally approached, e.g. 
during the latter stages of the hot soaking operation 
[ 131. Integration of (24) then yields 

and, therefore, also shows the equivalence of eqns 
(25a) and (25b). Physically, the solution [eqn (25a) or 
(25b)] indicates that after a re!atively short time lag 
(2> -8;’ - 0.08), the core temperature increases 
approximately linearly with time. As expected. the 
maximum and minimum temperatures occur at the 
surface and axis of rotation, respectively. 

MODEL ILLUSTRATlON III : INVERSE 

This solution can be verified by first noting that when 
ESTIMATION OF BOUNDARY FLUX DISTRIBUTION 

4 is constant, the problem becomes one-dimensional In the last illustration, we estimate the azimuthal 
in r. Using the Laplace transform on the cor- heat flux distribution on a work roll using data 
responding 1-D form of (15), we obtain [16] reported by Huang et al. [lo]. These investigators 

developed an inverse procedure for estimating the flux 

TZ4” [ 2i+;_X2 fexp(;fliO* 1 distribution based on a finite difference direct solver 

,i= I 0 n and conjugate gradient minimization. In the present 
n 

Since F(r, f = 0) = 0, eqn (25b) shows that 

illustration, direct solutions are obtained using the 
(25b) Duhamel solution given by eqn (23) while a whole 

domain method [ 171 comprises the inverse scheme. 
Based on data in [lo], we assume that the flux dis- 
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tribution is invariant on the fast time scale. The dis- 
tribution is then parameterized using : 

9=(4,3%,...t%v) (26) 

where qj = q(0 = K -j/18) and N = 36. A least squares 
function S(q) is minimized in order to arrive at an 
estimate for q, where 

S(q) = f(Y,-TJ2. 
,=1 

(27) 

Here, q is the dimensionless measured surface tem- 
perature at position 0 = rc *j/18 and T, = T,(q) is the 
corresponding calculated temperature. For any given 
q, a continuous flux distribution is approximated 
using cubic splines, based on the 36 equally spaced 
flux magnitudes in q. The 36 integrals represented by 
eqn (23) (one for each location ~9,) are calculated using 
Gaussian quadrature, while S(q) is minimized using 
the multidimensional simplex minimization pro- 
cedure [18]. In order to obtain a suitable sampling of 
the parameter space, the initial N+ 1 vertices 
(q\‘), q$“), . , q!$i ,) are generated randomly : 

qt.1 @)=L(1-2ki) i= l,..., N+l, j= l,..., N 

(28) 

where q$,o/’ is the jth component of the ith initial par- 
ameter vector, 1 is an amplification factor arbitrarily 

set equal to 4.0, and xj is a uniform random deviate 
between 0 and 1. (Note that final estimates are essen- 
tially independent of 1 over 0.25 < i < 5.) 

The property and parameter values used in the 
inverse solution are identical to those used in [lo] : 
PO = 7830 kg mm3, &, = 48.1 W m-’ K-‘, & = 490 
J m-’ K-‘, fi = 155.6 rpm, and 2 = 0.355 m. We 
arbitrarily set & = 10’ W me2 which fixes AFS at 
182.2% (Note, & can be fixed at any magnitude since 
it cancels out the problem through the defining 
relationship for AFS.) Finally, based on the tem- 
perature profiles reported in [IO], we set i; = 5O’C. 

Inverse estimation results 
In the following, we refer to the asymptotic-whole 

domain inverse technique as the AWD method and to 
the finite difference-conjugate gradient scheme in [lo] 
as the FDC method. Experimental temperatures Y 
used in eqn (27) were measured at a depth 0.2 mm 
below the roll surface [lo] and are reproduced in Fig. 
3(c). Corresponding surface heat flux distributions, 
estimated by both AWD and FDC, are shown in Fig. 
3(a). In addition, estimated temperature distributions 
on the roll surface and at the measurement depth, 
each obtained by the AWD method, are compared 
against corresponding experimental temperature dis- 
tributions in Figs 3(b, c), respectively. 

Referring to Fig. 3(a), it is apparent that the AWD- 

- Experimental (a) 
o Asymptotic-whole domain 

i 

,-400 
e 
$ 

E 200 
d 
E 
r-” 

0 
0 50 100 150 

- Experimental 
o Asymptotic-whole domain 

200 250 300 350 400 

- Experimental 
- Asymptotic-whole domain 

0’ I I I I I I I I 
0 50 100 150 200 250 300 350 400 

Angular position 
Fig. 3. Estimated heat flux and temperature distributions: (a) estimated surface heat flux distributions 
obtained by the method in Ref. [lo] (solid line) and by the asymptotic-whole domain method (AWD) 
(circles). The heat flux is plotted in units of IO’ W me*; (b) measured and AWD-estimated surface 
temperature distributions; (c) measured and AWD-estimated temperatures at a depth 0.2 mm below roll 

surface. 
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based flux estimate is qualitatively and quantitatively 
consistent with the FDC-based estimate. Note that 
the high flux region near 0 - 75” corresponds to the 
roll bite. Also note that while both flux estimates are 
based on linear direct models, the relatively large tem- 
perature variation suggests that nonlinear direct 
models, represented for example by eqn (lo), would 
provide more accurate estimates. Although the AWD 
estimate is somewhat more oscillatory than the FDC 
estimate, the oscillations can presumably be min- 
imized by regularizing the inverse solution [ 10, 13, 17, 
181, by increasing the ratio of measurements to the 
number of parameters describing q (here equal to I), 
or by coupling the asymptotic direct model to a more 
sophisticated minimization scheme. The degree of 
mismatch between the two estimates might be simi- 
larly reduced by one or more of these approaches. 
[Note, regularization was not performed since the 
error S in (27) did not reduce to sufficient levels (S 
must approach Na* where (r is the characteristic 
measurement error). This may be an artifact of the 
simplex minimization procedure, which tends to 
“float” near minimum points.] With respect to strip 
rolling, the relative simplicity of the AWD approach 
makes it an attractive alternative to potential finite 
difference and finite element-based inverse methods. 

The level of agreement between estimated and 
experimental surface temperatures in Fig. 3(b) is com- 
parable to that obtained by Huang et al. (by the FDC 
approach) [IO]. It should be noted, however, that the 
FDC estimate of peak temperature is approximately 
6% more accurate than the corresponding AWD- 
based estimate. Good agreement between estimated 
and measured temperatures is observed at the 
measurement site in Fig. 3(c). It should be kept in 
mind, however, that this result largely reflects 
adequacy of the minimization algorithm and is essen- 
tially independent of the model used for direct cal- 
culations. Note, oscillatory flux estimates originally 
observed near 0 - 0 - 27-t were displaced to 
Or = 25/127t by continuing the inverse calculation to 
0,. This procedure, introduced by Huang et al. [lo], 
improves the level of agreement between measured 
and estimated surface temperatures, and thus pre- 
sumably improves the accuracy of the flux estimate. 

CONCLUSIONS 

An asymptotic model of work roll heat transfer 
has been developed. The model provides a unified 
framework for relating prior roll heat transfer models 
and provides a convenient basis for future formu- 
lations. The model is illustrated three ways. First, 
we examine the behavior of the near surface thermal 
boundary layer under steady and dynamic conditions. 
It is found that the unsteady boundary layer relaxes 
to the cyclic steady state at a rate proportional to tm ‘I’, 
where t = ifi. Under steady conditions and subject 
to a reconstructed surface heat flux distribution, the 
model predicts temperature distributions which are in 

reasonable agreement with previously reported 
measurements. In the second illustration, we deter- 
mine core heating (or cooling) produced by an arbi- 
trary (circumferentially averaged) surface heat flux 
distribution. Insight into the resulting integral solu- 
tion is obtained by examining an idealized case of 
constant flux heating. Following a short time-lag, it is 
found that the corresponding core temperature 
increases linearly with time. In the last illustration, the 
circumferential heat flux distribution on a work roll 
is estimated by an inverse procedure. It is found that 
the asymptotic-whole domain inverse approach pro- 
vides relatively accurate temperature estimates, while 
flux estimates are quantitatively and qualitatively 
similar to those obtained by a recently developed finite 
difference-conjugate gradient inverse method [IO]. 
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